Powers of a Matrix of Special Type

By Gilbert C. Best

In this paper it is shown that if $E^{T} E=I$, i.e., if the columns of E are orthonormal, and K is a diagonal matrix with all terms positive, then

$$
\begin{equation*}
\left[I+E(K-I) E^{T}\right]^{n}=I+E\left(K^{n}-I\right) E^{T} \tag{1}
\end{equation*}
$$

for any real n. Since given any matrix V and a positive definite matrix G it is possible to find an E and K as just described satisfying

$$
\begin{equation*}
V G V^{T}=E(K-I) E^{T}: \tag{2}
\end{equation*}
$$

this provides a method for finding any power or root of matrices of the type

$$
\begin{equation*}
B=I+V G V^{T} \tag{3}
\end{equation*}
$$

This becomes particularly useful for work on high speed digital computers when G is very small. For suppose V-and hence also E-is $n \times r$ with $n \gg r$ and G is $r \times r$. Then keeping only E and, trivially, the diagonal of K, in fast-access storage and using only r core locations as working storage one can perform a rapid multiplication of an $n \times 1$ vector by any of the matrices $B, B^{1 / 2}, B^{-1 / 2}, B^{-1}$, etc., with B as in (3).

Equation (1) can be easily proved from the identity*

$$
\begin{equation*}
\left[I+E\left(K^{p}-I\right) E^{T}\right]\left[I+E\left(K^{q}-I\right) E^{T}\right]=I+E\left(K^{p+q}-I\right) E^{T} \tag{4}
\end{equation*}
$$

which can be established by merely multiplying out the terms on the left side and making use of the relation $E^{T} E=I$.

The conversion indicated in Eq. (2) can be accomplished by orthogonalizing the columns of V by elementary column operations [1]-the round-off error problem [2], not being significant when r is small-to obtain the matrix O such that

$$
\begin{equation*}
O^{T} O=I \tag{5}
\end{equation*}
$$

Let the product of the corresponding elementary matrices be the matrix R, i.e.,

$$
\begin{align*}
O & =V R \quad \text { or } \tag{6}\\
V & =O R^{-1} . \tag{7}
\end{align*}
$$

Then let

$$
\begin{equation*}
H=R^{-1} G R^{-1 T} . \tag{8}
\end{equation*}
$$

Note that H is $r \times r$ and symmetric positive definite. One then solves the small eigenproblem

$$
\begin{equation*}
H X=X L \tag{9}
\end{equation*}
$$

for X and the diagonal matrix L. It follows that
Received November 10, 1967.

* The author is indebted to the referee for this equation.

$$
\begin{align*}
X^{T} X & =I \tag{10}\\
X^{T} & =X^{-1} . \tag{11}
\end{align*}
$$

Then, using Eqs. (7) through (11)

$$
\begin{equation*}
V G V^{T}=O H O^{T}=O X L X^{T} O^{T}=E L E^{T} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
E=O X \tag{13}
\end{equation*}
$$

Furthermore $E^{T} E=X^{T} O^{T} O X=X^{T} X=I$ using Eqs. (13), (5), and (10).
An alternative method, though somewhat longer but more stable in terms of rounding errors, is to perform a Cholesky factorization [3] of the positive definite matrix G, obtaining

$$
\begin{equation*}
G=U U^{T} \tag{14}
\end{equation*}
$$

Then form the matrix

$$
\begin{equation*}
C=U^{T} V^{T} V U \tag{15}
\end{equation*}
$$

and solve the small $r \times r$ eigenproblem

$$
\begin{equation*}
C Y=Y L \tag{16}
\end{equation*}
$$

for Y and L. Since C is positive definite all terms of L are positive and one may set

$$
\begin{equation*}
E=V U Y L^{-1 / 2} \tag{17}
\end{equation*}
$$

so that

$$
\begin{equation*}
E^{T} E=L^{-1 / 2} Y^{T} U^{T} V^{T} V U Y L^{-1 / 2}=L^{-1 / 2} Y^{T} C Y L^{-1 / 2}=L^{-1 / 2} L L^{-1 / 2}=I \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
E L E^{T}=V U Y L^{-1 / 2} L L^{-1 / 2} Y^{T} U^{T} V^{T}=V G V^{T} \tag{19}
\end{equation*}
$$

as desired. Then let

$$
\begin{equation*}
K=I+L \tag{20}
\end{equation*}
$$

for K as in Eq. (2).
Another identity related to (4), though not so general, for M and K diagonal matrices of nonzero terms and F such that $F^{T} M F=I$, is

$$
\begin{equation*}
\left[M+M F(K-I) F^{T} M\right]\left[M^{-1}+F\left(K^{-1}-I\right) F^{T}\right]=I \tag{21}
\end{equation*}
$$

which again can be proved by simply multiplying out the terms of the product.

3703 Tulsa Way
Fort Worth, Texas 76107

1. S. Perlis, Theory of Matrices, Addison-Wesley, Reading, Mass., 1952, p. 49. MR 14, 6.
2. J. H. Wilkinson, Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood Cliffs, N. J., 1963. MR 28 \#4661.
3. A. Ralston \& H. S. Wilf, Mathematical Methods for Computers, Vol. 2, Wiley, New York, 1967, p. 71.
